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Abstract
We describe our four-camera multibaseline stereo system in a convergent configuration and
our implementation of a parallel depth recovery scheme for this system. Our system is capa-
ble of image capture at video rate. This is critical in applications that require three-dimen-
sional tracking. We obtain dense stereo depth data by projecting a light pattern of frequency
modulated sinusoidally varying intensity onto the scene, thus increasing the local discrim-
inability at each pixel and facilitating matches. In addition, we make most of the camera
view areas by converging them at a volume of interest. Results indicate that we are able to
extract stereo depth data that are, on the average, less than 1 mm in error at distances
between 1.5 to 3.5 m away from the cameras.
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1 Introduction

Binocular stereo vision is a simple and flexible method by which three-dimensional
(range) information of a scene can be obtained. Therefore, it is not surprising to find that
stereo is a very active area of research [2]. The geometrical issues in stereo have also been
well explored [6]. The primary drawback of stereo is the problem with image point corre-
spondence (for a survey of correspondence techniques, see [5]). The trade-off between
accuracy (which is aided by a wide baseline, or separation between the cameras) and ease
of correspondence (which is simpler with a narrow baseline) has been mitigated using
multiple cameras or camera locations. Such an approach has been termed multibaseline
stereo [121.

Stereo vision is computationally intensive. Fortunately, the spatially repetitive nature of
depth recovery lends itself to parallelization. This is especially critical in the case of multi-
baseline stereo with high image resolution and the practical requirement of timely extrac-
tion of data. A number of researchers have worked on fast implementation of stereo (e.g.,
[111, [13], [14]).

In this report, we describe our implementation of a depth recovery scheme implemented in
iWarp for a four-camera multibaseline stereo in a convergent configuration. Our system is
capable of image capture at video rate. This is critical in applications that require tracking
in three dimensions (an example is [10]). One method to obtain dense stereo depth data is
to interpolate between reliable pixel matches [8]. However, the interpolated values may
not be accurate. We obtain accurate dense depth data by projecting a light pattern of sinu-
soidally varying intensity onto the scene, thus increasing the local discriminability at each
pixel. In addition, we make the most of the camera view areas by converging them at a
volume of interest. Experiments have indicated that we are able to extract stereo depth
data that are, on the average, less than 1 mm in error at distances between 1.5 to 3.5 m
away from the cameras.

We introduce the notion of an active multibaseline stereo for extraction of dense stereo
range data in Section 2. The principle of multibaseline stereo is explained, and in addition,
we justify our use of the camera system in a convergent configuration. In this section, we
briefly describe our image acquisition system that enables us to capture intensity images at
video rate (30 Hz). Before the camera system can be used, it must be calibrated; this pro-
cedure is described in Section 3.

Prior to depth recovery, we apply a warping operation called image rectification to the set
of images as a preprocessing step for computational reasons; this warping operation is
described in Section 4. Our implementation of the depth recovery algorithm is subse-
quently detailed in this section.

Finally, we present results of our experiments in Section 5, analyze the sources of error in
our system in Section 6, and summarize our work in Section 7.



2 The active 4-camera system

Our multibaseline camera system is shown in Fig. 1. It comprises four cameras mounted on
a plain metal bar, which in turn is mounted on a sturdy tripod stand; each camera can be
rotated about a vertical axis and fixed at discrete positions along the bar. The four camera
video signals are all synchronized by ganging the genlock signals.

Fig. 1 The 4-camera system

In addition to the camera, we use a projector to cast a pattern of sinusoidal varying intensity
(active lighting) onto the scene. This notion of an active multibaseline stereo allows a denser
depth map as a result of improved local scene discrimination and hence correspondence.

2.1 The principle of multibaseline stereo

In binocular stereo where the two camera axes are parallel, depth can easily be calculated
given the disparity (the shift in position for 'corresponding points between the images). If the
focal length of both cameras isf, the baseline b and disparity d, then the depth z is given by
z = f. b/d (Fig. 2).

In multibaseline stereo, more than two cameras or camera locations are employed, yielding
multiple images with different baselines [ 12]. In the parallel configuration, each camera is a
lateral displacement of the other. From Fig. 2, d = f. b/z (we assume for illustration that
the cameras have identical focal lengths).

For a given depth, we then calculate the respective expected disparities relative to a refer-
ence camera (say, the leftmost camera) as well as the sum of match errors over all the cam-
eras. (An example of a match error is the image difference of image patches centered at
corresponding points.) By iterating the calculations over a given resolution and interval of
depths, the depth associated with a given pixel in the reference camera is taken to be the one
with the lowest error.
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Fig. 2 Relationship between the baseline b, disparity d, focal lengthf, and depth z

The multibaseline approach has the advantage of reducing mismatches during correspon-
dences due to the simultaneous multiple baselines. In addition, it produces a statistically
more accurate depth value [12]. However, using multiple cameras alone does not solve the
problem of matching ambiguity that occurs with smooth untextured object surfaces in the
scene. This is the reason why the idea of using active lighting in the form of a projected pat-
tern on the scene is important. The projected pattern on object surfaces in the scene helps in
disambiguiting local matches in the camera images.

2.2 Why use a verged camera configuration?

The primary problem associated with a stereo arrangement of parallel camera locations is
the limited overlap between the fields of views of all the cameras. The percentage of overlap
increases with depth. The primary advantage is the simple and direct formula in extracting
depth.

The parallel camera configuration is suitable for outdoor applications where accuracy is not
of utmost importance while speed is (e.g., [13]). A problem with this configuration is the
low percentage of overlap in the field of views of the cameras.

Verging the cameras at a specific volume in space is optimal in an indoor application where
maximum utility of the camera visual range is desired and the workspace size is constrained
and known a priori. Such a configuration is illustrated in Fig. 3. One such application is the
tracking of objects in the Assembly Plan from Observation project [9]. The aim of the
project is to enable a robot system observe a human perform a task, understand the task, and
replicate that task using a robotic manipulator. By continuously monitoring the human hand
motion, motion breakpoints such as the point of grasping and ungrasping an object can be
extracted [ 101. The verged multibaseline camera system can extend the capability of the sys-
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Fig. 3 A verged camera configuration (dark shaded area is the common 3D space viewable
from all cameras).

tern to tracking the object being manipulated by the human. For this purpose, we require fast
image acquisition (though processing is not as critical) and accurate depth recovery.

2.3 Video-rate image acquisition system

Our image acquisition system consists of the physical camera setup described earlier in this
section, the video interface board, and the 8x8 matrix of iWarp cells (Fig. 4). Each iWarp
component contains a 20 MFLOPS computation engine and low-latency (100-150 ns) com-
munication engine for interfacing with other iWarp cells [3]. The existing iWarp system is
an 8x8 torus of iWarp cells, half of which have 16 MB DRAMS per cell. The video inter-
face, which is described in detail elsewhere [17], is connected directly to the iWarp cell
through the memory interface; the digitized video data is routed and distributed at video rate
to the DRAMs by taking advantage of iWarp's systolic design [4].

3 Camera calibration

Before data images can be taken and the scene depth recovered, we must first calibrate the
camera configuration. Calibrating the camera configuration refers to the determination of
the extrinsic (relative pose) and intrinsic (optic center offset, focal length and aspect ratio)
camera parameters. The pinhole camera model is assumed in the calibration process. The
origin of the verged camera configuration coincides with that of the leftmost camera.

A printed planar dot pattern arranged in a 7x7 equally spaced grid is used in calibrating the
cameras; images of this pattern are taken at known depth positions (five in our case). An
example set of images taken by the camera system is shown in Fig. 5.
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Fig. 4 Block diagram of the image acquisition system. The shaded boxes labeled "NM" indicate the
16M DRAMs connected to local iWarp cells while the shaded box labeled "VI" refers to the video

interface connected to one of the iWarp cells.
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(a) (b) (c) (d)
Fig. 5 Calibration images (equalized) taken from the convergent camera configuration ((a-(d))

The dots of the calibration pattern are detected using a star-shaped template with the weight
distribution decreasing towards the center. The entire pattern is extracted and tracked from
one camera to the next by imposing structural constraints of each dot relative to its neigh-
bors, namely by determining the nearest and second nearest distances to another dot. This
filters out wrong dot candidates, as shown in Fig. 6.

The simultaneous recovery of the camera parameters of all rour cameras can be done using
the non-linear least-squares technique described by Szeliski and Kang 1161. The inputs and
outputs to this module are shown in the simplified diagram in Fig. 7. An alternative would
be to use the pairwise-stereo calibration approach proposed by Faugeras and Toscani 171.
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Fig. 6 Detecting and tracking the calibration points (only part of the image associated with Camera I
is shown). The black +'s are the detected points while the white +'s are the spurious and rejected

points: (a) Points detected in image of Camera 1; (b) Points detected in images of Cameras I and 2: (c)
Points detected in images of Cameras 1, 2, and 3; (c) Points detected in all images.

Set 2D and 3D point position inactive
Set camera parameters active

Dot image positions
for Cameras 1-4 and Non-linear
for different depth No Least-squares Intrinsic
locations Shape and Motion extrinsic

Extractor camera
Corresponding 3D Er Module parameters
positions of dots

Fig. 7 Non-linear least-squares approach to extraction of camera parameters

4 Image rectification and depth recovery

If two camera axes are not parallel, their associated epipolar lines are not parallel to the scan
lines. This introduces extra computation to extract depth from stereo. To simplify and
reduce the amount of computation, rectification can be carried out first. The process of recti-
fication for a pair of images (given the camera parameters, either through direct or weak cal-
ibration) transforms the original pair of image planes to another pair such that the resulting
epipolar lines are parallel and equal along the new scan lines. Rectification is depicted in
Fig. 8. Here c1 and c2 are the camera optical centers, rl'I and -12 the original image planes,
and flI and C12 the rectified image planes. The condition of parallel and equal epipolar lines
necessitates planes f2l and !2 to lie in the same plane, indicated as !I2. A point q is pro-
jected to image points v, and v2 on the same scan line in the rectified planes.
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Fig. 8 Image rectification

A simple rectification method is described in [1]. However, the rectification process

described there is a direct function of the locations of the camera optical centers. It is not

apparent how the desirable properties of minimal distortion and maximal inclusion can be

achieved with their formalism. We have modified their formalism to simplify the rectifica-
tion mapping and adapt it to our situation.

Let the original 3x4 perspective transforms of two cameras be P1 and P2 , where

TPj I Pj 14

p.= T

P P. 2  Pj24
T

pj 3  PJ34

The original perspective transform Pj is constructed from known camera parameters of the
form

1 1 TT 1 T

f~ 0 01 1 [ 0 0 ri I t1-,1  j=

where the tilde (-) above the vector indicates its homogeneous representation. q is the 3D

point, uj the image coordinate vectorf. the focal length, aj the aspect ratio, and Rj and tj the

extrinsic camera parameters. It is easy to see that the camera axis vector is rj 3, and in the

camera image coordinate system, the x- and y-directions are along rjl and rj 2, respectively.
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Also, let M and N be the rectified perspective transforms, respectively, where
'T -T 4

m I m 14 n, n 4

M= T and N = n T nm 2 m 24  2

m 3 in 34  j
Since perspective matrices are defined up to a scale factor, we can set both M34 and n34 to be
unity. Accordingly, based on the analysis in [II, m3 = n 3, m- = n2, M2 4 = n24, and from the
constraint that cl and c2 remain the optical centers,T

mI c + IM4 = 0T

m2 c 1 m 24 = 0
T

m 2 c 2 +m 24 = 0T
nlc2nl4= 0
T

m3c1 + 1 = 0
Tn c + i = 0

Let d12 = C2- 2 In a departure from [11, we choose the common rectified camera axis
direction not only to be perpendicular to d 12, but also to point in the direction between those
of the unrectified camera axes (i.e., r13 and r23). This is done by first calculating

g = r 13 +2r, 3

We then find the nearest vector perpendicular to d 12:
gTd2d

g' = g i dm2] 12

j 1d1211

Thus,

m3 = n3 9 '

3 3 9'g C1  g I C2

Determining m2 (and hence m24) is similar, with the additional constraint that

1m , - t- -

Finally, m I is determined from the relation

mt = T (m 2 xm 3 )
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"r (and hence mr and M14 ) is calculated based on the constraint

n, and n14 are calculated in the same way, using the counterpart values of P2.

As in [1], the homographies (or linear projective correspondences) that map the unrectified
image coordinates to the rectified image coordinates are

T
mI

H1 = m2T [(P12 xP 1 3) (P 13 xP 1 1 ) (PIxP12)

T

where

ii = H161

ii and i, are the homogeneous unrectified and rectified image coordinates, respectively,
and

T
n,

H2 = n[T [(P 22 XP 2 3 ) (P2 3 XP 2 1 ) (P 2 1 ×P 2 2 )]

T

with

V2 = H 2 6u2

ui2 and v2 are similarly defined.

To recover depth from multibaseline stereo (specifically a 4-camera system) in a convergent
configuration, we first rectify pairs of images as shown in Fig. 9.

There are two schemes which allows us to recover depth. The first uses all the homographies
between the unrectified images and rectified images (namely H 11, H12, H1 3 , H1 1, H32, and
H4 3 in Fig. 10).
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Camera I Camera2 Camera3 Camera4

Unrectified -1
(original) PI P2 P3  P 4
images DP I

HI, H2 1

7 M1  Ni H32

SHH 4 3

. I M2 N2

VV
H13

M3 N3

Fig. 9 Image rectification scheme

4.1 Direct approach for depth recovery

Subsequent to rectification, to recover depth, we first determine the corresponding location
in the rectified image plane for the three pairs of cameras (Fig. 10). We wish to recover the
3D location q of the point corresponding to u0 . q can be specified in the following form:

q = c, +Xkd

where c, is the optical center of the first ("reference") camera, a is the unit vector in the
direction from c1 to q, and X is the depth of q from the reference camera optical center. If

i = i ' = Y and •,j = with yj = yj'
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Camera I Camera2 Camera3 Camera4

Unrectified •[-• F
(original) PI P2 P3 P4

images

HII (H 2,

VIj
......... M1  j NI H32

H4 3
H12 v
..... ... M2  N2

13DV

-V3 M3  w3 N3

Fig. 10 Recovering depth from multibaseline stereo after rectification

then
TP11 c 1 +X'd +P1 i1  pa

PI I(C1 "a) +p 1 PIW P II
T(T

p3 C +X + P1 34  P T

since Ptc1 - [0 0 0 ]T So

(apI 13 -p 1 ) Td = 0

(PIP13pl-pI)Ta = 0

i.e.,
a (aIp 13 -P 1 1 ) x (PIP13-P12)
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from which we get

= eLI (P 12 X P 13) + 31 (P13 X PI1 ) + (P I X P 12)
Hal (P 12 X P1 3 ) + 01 (P 13 xP 1 ) + (P11 X P12)II

To find the disparity, Aj = x'j - xj, as a function of the projection transform elements, we first
find the expressions for the rectified image coordinates (noting that yj = y'j):

T- " T T "

T a T
m:.dl njjc 1 +4"nj 4 + Xn11jd

= = m'd and w= =T'd -yj T -IY, Md J mi2d
mT T^
Pia mi3d

Hence

Tfnjlcj + nj,€ + r (il -mjt)

By varying X within a specified interval and resolution, we can calculate Aj's for the pairs of
rectified images, and hence calculate the sum of matching errors (as in [131 with multiple
parallel cameras). The depth is recovered by picking the value of X associated with the least
matching error.

4.2 A computationally more efficient approach for depth recovery

The method described above implies that we must calculate, at each point and for each
depth, the corresponding points in all images. This requires projective transformations of all
images to be performed for each depth value. There is a more computationally efficient way
to recover depth. This stems from the following properties:

1. The two rectified planes fall on the same plane.

2. The line joining the two projection centers is parallel to this common plane.

Properties I & 2 (which are the necessary conditions for rectification) give rise to

3. The homography between the two rectified planes cannot be projective (since the scan
lines on the rectified images are parallel, i.e., the corresponding rows at both rectified
images are equal). This is true since the "projection" lines (the corresponding scan lines)
meet at infinity.
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From 3, the homography between rectified planes must then be at most a 2D affine trans-
form, i.e., the last row of the homography matrix must be (0 0 1). This dispenses with the
additional division by the z-component in calculating the corresponding matched point for a
particular depth.

The scheme now follows that in Fig. 11. The matching is done using the homographies
between rectified images K1, K2 and K3 (which we term as rectified homographies). The
rectified homographies can be readily determined as follows:

For a known depth plane (z = d), we can "contract" the 3x4 perspective matrix M (to the rec-

tified plane) to a 3x3 homography G. For camera 1, we have

X 
X U1

M [1Pt1 P12 P13 P14] [, P/ 2 dP1 3 + P] G[ s

where Py is the jth column of M, and (ut, VI)T is the projected image point in camera 1. Sim-
ilarly, for camera m,

XX UM

M i =Y = sl ,

Since the rectified planes are coplanar, sl = s,; hence

tio G 1 = U/ U/W I- L -I1 LJ1
Note that, due to rectification, vm - v1, and as explained earlier in this subsection, the bottom
row of K1m is (0 0 1). In other words, the projective transformations are reduced to affine
transformations, reducing the amount of computation.

Depth recovery then proceeds in a similar manner as the direct approach described in the
previous subsection.

4.3 An approximate depth recovery approach

In both approaches described earlier, for each depth, each pixel in the unrectified reference
image has to be mapped Ncameras - I times to the respective rectified images (correspond-

ing to the homographies H 11, H12, and H, 3 in Fig. I1). We can work in the rectified image



14

Cameral Camera2. Camera3 Camera4

Unrectified F"7
(original) u , P2 P3  P4
images I D/2 D

HI,

K12

H12

0 K13

"• M2 N2

2N

U 13
Cz K14

V3 3

M3 N3

Fig. 11 A computationally more efficient depth recovery scheme

coordinates (say MI), but this still requires mapping from M2 to M, and M3 to M, in the
collection of match errors for each depth value. This means that we need to perform
(Ncameras - 2) Ndepth sets of bilinear interpolations associated with image warping (where

Ndepth is the number of depth values and Ncameras is the number of cameras).

In order to avoid the warping operations, we use an approximate depth recovery method.
The matching is done with respect to the rectified image of the first pair. However, the recti-
fied images N2 and N3 will not be row preserved relative to M, (Fig. 12). We warp rectified
images N2 and N3 so as to preserve the rows as much as possible, resulting in N' 2 and N' 3

(Fig. 12). The errors should be tolerably small as long as the vergence angles are small. In
addition, this effect should not pose a significant problem as we are using a local windowing
technique in calculating the match error.
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Camera I Camera2 Camera3 Camera4

Unrectified I
(original) U P P2 P3 P4
images

Hll
K12

CIO)
to

•tL12 =K13H12HII-i

*0•

'0N 2  N'2

oL13 =KI4HI3Hll"1

A3w3 . ...- •,

N3  N' 3

Fig. 12 The approximate depth recovery scheme (compare this with Fig. 11)

By comparing Fig. 12 with Fig. 11, we can see that the mapping from MI to N2 is given by
the homography L12 = K13H 12 H11 l. Similarly, the mapping from M, to N3 is given by L13

K KI4HI 3H, I 1. The matrices A2 and A3 are constructed such that

r = A2L12 r and r = A3L13[r

i.e., the resulting overall mapping is row preserving (r and c are the row and column respec-
tively). In general, this would not be possible, unless all the camera centers are colinear;
however, this is a good approximation for small vergence angles and approximately aligned
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cameras. A2 and A3 are calculated from the following overconstrained relation using the
pseudoinverse calculation:

AjLldnin Cmin Cmin Cmax Cmax d Cmin Cmin Cmax Cmax

rmin rMax rmin rmax] i rmin rmax rmin rmax

-i•x 1 X2 X3 X4 X5 X6 X7 X8mx

Linr rmax rmin rma rmin rma. rma forj 1, 2.

1 1 1 1 1 1 1 1 1

dan rr da,.

where L is associated with the minimum depth and L1 7 with the maximum depth, Cin
and cm,,, are the minimum and maximum values of the image column, and r,,i and rmax are
the minimum and maximum values of the image row, respectively. Xi (i=1 1,...,8) are don't-
care values. The symbol I is used to represent matrix augmentation.

This algorithm has been implemented in parallel using the Fx (parallel Fortran) language
developed at Carnegie Mellon [ 15]. Fx, a variant of High Performance Fortran with optimi-
zations for high-communication applications like signal and image processing, runs on the
Carnegie Mellon-Intel Corporation iWarp, the Paragon/XPS, the Cray T3D, and the IBM
SP2. The experiments reported in this paper were done on the iWarp.

5 Experimental results

In this section, we present results of our active multibaseline stereo system. As mentioned
before, a pattern of sinusoidally varying intensity are projected onto the scenes to facilitate
image point correspondence.

An example of a set of images (Scene 1) and the extracted depth image is shown in Fig. 13
and Fig. 14 respectively. The large peaks at the borders of the depth map are outliers due to
mismatches in the background outside the depth range of interest.

(a) (b) (c) (d)

Fig. 13 Views of the globe (Scene 1) from the four cameras ((a)-(d))

Another example (Scene 2) is shown in Fig. 15 with the recovered elevation map in Fig. 16.
As can be seen from the elevation map, except at the edges of the objects on the scene, the
data looks very reasonable.
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Fig. 14 Recovered elevation map of Scene 1

(a) (b) (c) (d)

Fig. 15 Views of Scene 2

Fig. 16 Elevation map of Scene 2

For Scene 3 (Fig. 17), subsequent to depth recovery (Fig. 18), we fit the known models onto
the range data using Wheeler and Ikeuchi's 3D template matching algorithm [18] to yield
results seen in Fig. 19. Again the data looks very reasonable.
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(a) (b) (c) (d)
Fig. 17 The four camera views of Scene 3

Fig. 18 Extracted elevation map of Scene 3

We have also performed some error analysis on some of the range data that were extracted
from Scene 2. Fig. 20 show the areas for planar fit; Table 1 shows the numerical results of
the planar fit. As can be seen, the average planar fit error is smaller than I mm (the furthest
planar patch is about 1.7m away from the camera system). Fig. 21 depicts the error distribu-
tion of the resulting planar fit across the image (only on pixels on planar surfaces in the
scene). The darker pixels are associated with lower absolute error in planar fitting.

We have also obtained stereo range data of a cylinder of known cross-sectional radius and
calculated the fit error. In both scenes (with different camera settings), the cylinder is placed
about 3.3 m away from the camera system.

As can be seen from Table,2, the mean absolute error of fit is less than 1 mm.

6 Observations on accuracy

We have exceeded one millimeter accuracy. Here we informally characterize the remaining
sources of error in our system.
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Fig. 19 Recovered 3D points of Scene3 with fitted cylinder and box models (shown at four
different viewpoints)

Fig. 20 Sampled areas for planar fit.

There are a number of sources of error in our system and in stereo generally:

1. The use of an active multibaseline approach reduces the chance of false matches, but they
can still occur.

2. The fundamental assumptions of stereo are that the texture being viewed is unique over
the search window, and that the surface is visible to and lies at the same angle to all cam-
era optical axes. The former assumption is addressed by the active component of our sys-
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Table 1 Results of fitting planes to selected patches in Scene2.

Patch plane equation: p- fi = d Avg. Max.
Patch # size lerrorl lerrorl

(pixels) fi d (mm) (gm) (mm) ([.m)

1 20925 (0.012, 0.075, 0.997) 1746.8 550 2.24 400

2 12405 (0.009, 0.999, -0.003) 1119.6 420 1.91 310

3 993 (0.026,0.999,0.0240) 1023.8 520 2.97 420

4 1340 (-0.025, 0.019,0.999) 1449.5 370 1.75 320

Fig. 21 Plane fit error distribution for Scene2 (enhanced, planar surfaces only)

(a) (b) (c) (d)
Fig. 22 Four camera views of the first cylinder scene

Table 2 Results of fitting cylinders
Cylinder scene # Patch size Average Maximum Standard

(pixels) lerrorl (gim) lerrorl (mm) deviation I(tm)

1 25200 640 4.35 540

2 35150 640 3.17 500
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tem, but the latter is not and cannot be, except by placing the cameras as close together as
possible (which reduces accuracy). The failure of this assumption is particularly evident
at the boundaries of objects, where it is the cause of significant error.

3. Errors are possible during calibration, since the position of our calibration plate is
adjusted by hand (limiting its accuracy in positioning to about 1 mm), and the dot pattern
positions are not always found precisely.

4. We use a pinhole camera model, which will result in errors near the edge of the image,
particularly with short focal lengths.

5. We make the approximation discussed in Section 4.3, which will result in errors when the
camera optical centers are not colinear.

Of these, only the first seems to be a cause of significant error (the second also causes large
error, but we deliberately omit it from our error analysis since it is fundamental to stereo).
All of the large errors (more than 1 mm) are observed to be in regions where the projected
pattern does not provide sufficient texture for a correct match.

We have attempted to reduce these errors by analysis and experimentation. Analysis shows
that a frequency-modulated sine wave pattern, as used there, is a good choice since it does
not require large dynamic range (our iWarp video interface has manually adjustable gain
and offset controls, leading us to limit the dynamic range to avoid clipping). Also, a ran-
domly frequency-modulated sine wave gives the best possible result, since the same pattern
occurs twice in the search area with vanishingly small probability, theoretically eliminating
the possibility of false matches. Experiments with randomly modulated patterns have shown
that

" The lowest frequency of the sine wave (as seen in the image) must be higher than the width of the
correlation match window.

" The highest frequency usable is constrained by the resolution of the camera and the focus control
of the projector. Using a higher frequency than the maximum results in a gray blur and many false
matches.

The trade-off between these two constraints involves optimizing the projector placement
and focus, the camera resolution, the number of cameras, and the camera dynamic range.

In addition, many of the problems of false matches occur where the limited dynamic range
of our video interface plays a role, particularly with dark surfaces or sufaces which lie at an
oblique angle to the projector (so that no pattern appears in the image), or surfaces with
specularities (so that clipping overwhelms the pattern). In these cases, we believe careful
adjustment of the projector, including use of multiple projectors (since there is no particular
constraint between the projector and camera in active stereo, this is easy to do), can serve to
reduce these effects. The use of multiple patterns, either time-sequenced (taking advantage
of our system's ability to capture images at high speed) or color-sequenced (using color
cameras) is also promising.
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7 Summary

We have briefly described a 4-camera system that is capable of video rate image acquisition.
It uses a software distribution approach which takes advantage of iWarp's systolic design.
The four cameras are used in a converging configuration for more effective use of the cam-
era view spaces. In addition, to recover dense stereo range data from each set of images, we
project a sinusoidally varying pattern onto the scene to enhance local intensity discrim-
inability. This results in the notion of active multibaseline stereo system.

We have also described in detail our implementation of the depth recovery algorithm which
involves the preprocessing stage of image rectification. Our approximate depth recovery
implementation was designed for reduced computation.

The results that we have obtained from this system indicated that the mean errors (discount-
ing object border areas) are less than a millimeter at distances varying from 1.5 m to 3.5 m
from the camera system. The performance of the system is thus comparable to a good struc-
tured light system, while allowing data to be captured at full video rate.

Active multibaseline stereo appears to be a promising addition to structured light imaging
systems. It allows images to be captured at high speed and still have high spatial resolution.
It allows great freedom in the relationship between the camera, the surface, and the light
source, making it possible to manipulate these so as to get high accuracy in a wide variety of
circumstances.
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